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The main idea of this paper is to design an array of core-shell plasmonic nanoparticles manipulating a
desired near-field focusing pattern in optical spectrum. The interactions between the array elements are for-
mulated by using dyadic Green’s function analysis and by employing the closed-form formula for electric
polarizability of each plasmonic particle �dipolar mode approach�. The point-matching technique is applied to
optimize the plasmonic-array field performance as close as to the desired near-field pattern. The final equation
for finding the polarizability of each element will be a system of nonlinear equations that can be solved
successfully by Levenberg-Marquardt technique. Controlling the inner and outer radii of each element using
magnitude and phase contours of polarizability demonstrates a near-field subwavelength concentration. The
accuracy of our theoretical model is successfully compared with a full-wave numerical analysis using CST

commercial software. Interesting physical features for the optical near-field engineering are illustrated.
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I. INTRODUCTION

Tightly localizing light and subwavelength near-field fo-
cusing are well-understood topics in recent theoretical and
experimental optics.1,2 The major physical obstacle for con-
fining the light in very small spots is the diffraction limit, in
which there is a considerable attenuation in evanescent
waves for the finer spatial details �smaller than a
wavelength�.3 Super-resolution aperture scanning micro-
scope was successful but expensive in fabricating a small
aperture in a thin diaphragm to obtain information about the
small details features.4 Theoretically, it can be shown that in
a medium of negative index property, evanescent waves can
be enhanced in amplitude by perfect lens realization and its
unique transmission process.5 One L-C loaded left-handed
transmission line medium sandwiched between two com-
mensurate unloaded printed grids experimentally demon-
strated the superlens phenomenon3,6 but the low inductor
quality factor is the primary cause of the loss degrading the
performance considerably. Some efforts were done recently
to theoretically design a near-field focusing plates by back-
propagation of the desired near field and then solving an
integral equation to find the passive surface impedance.7,8

One corrugated near-field plate theoretically prompted a sub-
wavelength focal pattern with a null-to-null beamwidth of
� /10.9 Another approach has been based on synthesizing the
focused pattern by displaced slot elements which enable spa-
tially shifted beams in the near field.10 The desired weighted
magnetic current for each slot is realized by finding the slot
dimensions in optimized iteratively full-wave simulations.
However, the focus in all of these approaches has been in
microwave spectrum where the metal acts like a high-
conductivity structure.

The main question is to how manipulate the waves in
terahertz spectrum and provide subwavelength near-field fo-
cusing in optical region. Notice that, in this frequency spec-
trum, the metals have dispersion properties with negative
permittivity parameters and one would need to take this
property into the account for a novel optical concentrator

design. Recently, there have been some efforts to shape the
light beams in nanometer scale providing far-field directive
emission, with the use of optical Yagi-Uda plasmonic
nanoantennas �functioning based on the resonant plasmonic
core-shell particles�,11 or in more general forms explored in
Refs. 12 and 13.

In this paper, we will use the same strategy but for shap-
ing the light in the near-field region establishing a narrow-
beamwidth pattern in the focal plane. Our formulation has
this capability that we can obtain any two-dimensional sub-
wavelength focusing function as the preferred near-field pat-
tern. Such array of plasmonic particles can be exploited as an
array of optical nanoantennas manipulating the waves in the
near-field region. The geometry of each concentric core-shell
spherical particle, the inner and outer radii, can be tailored
for the application of interest. Instead of using time-
consuming and convoluted iteratively full-wave simulation
to design the inner and outer radii of each element, here we
introduce an analytical work based on the dipolar mode
analysis and finding the intersection of the amplitude and
phase contours for the polarizability in a plane created by
two independent variables, the radii ratio �a /b� and the nor-
malized shell radius �b /�� of the nanoparticles. The other
point in our paper is that we will find the dipole mode po-
larization for each element in an inverse scattering problem
�ISP�, in which one attempts to infer the properties of the
scatterer from the scattered field measured outside the
scatterer.14 In general, an ISP can be a nonlinear problem and
in our case nonlinearity between the polarizabilities of the
elements and the sample points of the desired near-field pat-
tern can be observed. This is due to the excitation of both x-
and y-directed polarizations in a plasmonic particle. The ar-
ray of plasmonic nanoparticles shapes the beam of the dipole
source excitation located at the center. The dipole moments
with general polarizations are induced on each element so
that we have an array of dipoles where by tailoring the ge-
ometry of each element the required optical near-field con-
centration is established.

Choosing plasmonic particles as the array elements in our
work is due to the fact that plasmonic materials have extreme
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interactions with the electromagnetic waves in optical re-
gime. Designing and fabricating nanoantennas by using plas-
monic particles have had a great development in recent
years.12,13,15–17 The frequency response of the amplitude of
the polarizability of a plasmonic particle can possess a very
high peak even though the size of the particle is very small in
comparison with the wavelength.11 The amplitude and phase
of the polarizability have significant variations around the
resonant frequency. Hence, for the concentric core-shell
nanoplasmonic particle in which the core has a positive per-
mittivity and the plasmonic shell has a negative permittivity,
by changing �a /b� and �b /�� wide-range amplitude and
phase of the polarizability can be obtained. This property of
the concentric core-shell nanoplasmonic particle is of great
advantage when one uses it as an element in the array con-
figuration.

II. FORMULATION: STEP-BY-STEP DESIGN PROCESS

Figure 1�a� depicts the configuration for an array of
dielectric-plasmonic particles located at z=0 plane. The ar-
ray has N=M2−1 concentric elements, where M is the num-
ber of elements along the row and column in the geometry
�shown in Fig. 1�a��. The excitation is located at the center
and is oriented along the y, which its performance must be
shaped in the focal plane by using array elements. The unit-
cell sizes along the x and y directions are considered to be dx
and dy, respectively. Here, for the sake of simplicity a square
unit cell with dx=dy =d is assumed. The configuration of
each element is depicted in Fig. 1�b�. Each element is a con-
centric core-shell spherical particle with the inner and outer
radius of a and b, respectively. The core is a dielectric ma-
terial with positive permittivity �1 and the shell is made of a
plasmonic material with negative and dispersive permittivity
�2. The objective is to find the pair �a ,b� for each element to
engineer a desired pattern for y component of the electric
field, Ey,des, at focal plane, z=L. This goal will be realized
through an outlined step-by-step design process describing
below. It is evident that any other component of the electric
or magnetic field can also be tailored with the proper array of
plasmonic particles. Notice that our problem can in fact be
considered as an ISP in which the scattered field by the ele-
ments �or scatterers� is given in one plane �focal plane� and
the geometry of the scatterers must be determined. During

the design process, this ISP is turned out to be a nonlinear
problem due to the coupled induced polarizations for the
plasmonic nanoparticles.

The first step in the design approach is to obtain the di-
polar mode equations, which is to find the x- and y-polarized
electric dipole moments induced on each plasmonic element.
Since the array elements have subwavelength sizes, from
Mie theory, one can approximate the nth plasmonic particle
with the electric dipole moment pn and the polarizability
�n.13,18 The dipole mode approximation is valid as long as
the size of particles is small and further they are not in the
near-touching zone where higher-order modes can be
generated.19,20 The design in our paper will be in the region
that the electric dipole mode is sufficient to represent the
physics21,22 �the diameter of the particles �2b� is less than
0.1� and their surface to surface spacing is larger than
0.05b�. Obviously, utilizing multipole expansion one can
provide more accurate results when the distances between
the particles are very small and in touching zone. This re-
quires an extensive modeling and optimization. Here, a di-
pole mode approximation is used.

For the nth plasmonic element, one can then assume pn
=�nEn, where En is the total electric field radiated by all
other elements and the source. The vector dipolar mode
equation can be expanded in two scalar equations as below

px
n = �n� �

m=1,m�n

N

�Gxx,z=0
nm px

m + Gxy,z=0
nm py

m� + Gxy,z=0
n0 psource� ,

�1a�

py
n = �n� �

m=1,m�n

N

�Gyx,z=0
nm px

m + Gyy,z=0
nm py

m� + Gyy,z=0
n0 psource� .

�1b�

In Eq. �1�, px
n and py

n are x- and y-polarized electric dipole
moments at the location of nth plasmonic element. For the
dipole source at the center of the array, the electric dipole
moment is psource= ŷpsource. The Green’s function Gws,z=0

nm ,
where ws� �xx ,xy ,yx ,yy	 is the electric field component in
w direction at the location of nth element radiated by the unit
electric dipole moment along s direction at the location of
mth element. In other word, Gws,z=0

nm is the ws component of

the electric dyadic Green’s function �DGF�, Ḡ�r ,r��, where r
is the location of nth observation element and r� is the loca-
tion of mth source element. A closed-form formula for the
DGF is given as23

Ḡ�r,r�� =
1

4��0

e−jk0R

R3 
��k0R�2 − jk0R − 1�Ī

− ��k0R�2 − j3k0R − 3�
RR

R2 � , �2�

where Ī is the identity dyad, R=r−r�, R= �R�, and k0
=��0�0 is the free space wave number.

It must be mentioned that, for the array depicted in Fig.
1�a�, there are no induced dipoles along the z direction for
the plasmonic particles. The reason is explicable by using the

(a) (b)

FIG. 1. �Color online� �a� Array of dielectric-plasmonic core-
shell nanoparticles in z=0 plane. Excitation is an infinitesimal di-
pole located at the center and polarized along the y axis. �b� The
geometry of spherical concentric dielectric-plasmonic core-shell
nanoparticle.
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closed-form formula of DGF given in Eq. �2�. As is ob-

served, DGF includes two dyads: Ī and RR. Therefore, for
the excitation which is along ŷ, the radiated electric field at
the source plane, z=0, has two components: one is parallel to

Ī . ŷ= ŷ, and the other is parallel to R�R . ŷ� or R vector. Since
we have a planar array at z=0, R is in x-y plane and does not
include any z component, that is why there is no z-polarized
induced dipole. It is obvious that if there is an array of plas-
monic particles over a curved surface, let us say a paraboloid
or a sphere, then R can have all the components, and as a
result all the x-, y-, and z-polarized induced dipoles may
exist.

Equations �1a� and �1b� introduce 2N dipolar mode equa-
tions and one can recast a compact matrix form for them as
follows:

��Gxx,z=0� �Gxy,z=0�
�Gyx,z=0� �Gyy,z=0� ���px�

�py� � = �− ��x,z=0�
− ��y,z=0� � . �3�

�Gws,z=0� is a N�N matrix, where its diagonal terms are
related to the particles polarizabilities and its off-diagonal
terms are obtained from the Green’s functions Gws,z=0

nm . The
N�1 matrix �ps�, s� �x ,y	, is defined with mth element
equals to ps

m. The source dipole effect is appeared in the
right-hand side, in N�1 matrix ��w,z=z0

�, w� �x ,y	, which
its nth element is Gwy,z=0

n0 psource. From Eqs. �1� and �3� one
can readily obtain the below expressions for the diagonal
terms of the �Gws,z=0� matrix

Gxx,z=0
nn = Gyy,z=0

nn = − �n
−1, �4�

Gxy,z=0
nn = Gyx,z=0

nn = 0. �5�

Polarizabilities, �n’s and the matrix �ps� are the unknowns
terms in Eq. �3�, which are solved as below.

The second step in our design approach involves colloca-
tion �point-matching method� to relate the required x- and
y-polarized dipoles, which satisfies Eq. �3�, to the desired
electric field pattern in the focal plane. As it was discussed
earlier, the plasmonic-particles array is designed to provide
the required two-dimensional narrow-beamwidth near-field
pattern for a component of the electromagnetic fields, let us
say Ey, at the focal plane z=L. Assuming one needs to
achieve desired field pattern f�x ,y� as below

Ey�x,y,L� = f�x,y� . �6�

One needs N point-matching equations to obtain the re-
quired polarizablities. These required collocation equations
are achieved by applying point matching on Eq. �6� at N
points. These points are chosen to be the locations of plas-
monic particles in the array. The obtained equation will be as
below

fn = �
m=1

N

�Gyx,z=L
nm px

m + Gyy,z=L
nm py

m� + Gyy,z=L
n0 psource. �7�

Here fn is the value of the desired focusing function at the
location of nth plasmonic element. In Gws,z=L

n,m , the source

point is at the location of the mth plasmonic element at z
=0, and the observation point is at the focal plane, z=L,
which its projection on z=0 is the location of the nth ele-
ment. The compact form associated with the Eq. �7� is turned
out to be

��Gyx,z=L��Gyy,z=L����px�
�py� � = �f� − ��y,z=L� . �8�

�f� is constructed by fn and the nth element of ��y,z=L� in-
cludes the radiation of the central dipole which is equal to
Gyy,z=L

n0 psource.
The third part of this design procedure is to set up an

equation only in terms of the polarizabilities, �n’s. This
equation can be achieved by eliminating the electric dipole
moment matrices �px� and �py� from dipolar mode Eq. �3�,
and point matching Eq. �8�, obtaining the below matrix
equation

��Gyx,z=L��Gyy,z=L����Gxx,z=0� �Gxy,z=0�
�Gyx,z=0� �Gyy,z=0� �−1�− ��x,z=0�

− ��y,z=0� �
= �f� − ��y,z=L� . �9�

The recent equation is an inverse scattering equation, ISE
because it relates the properties of the scattered field at z
=L, ��f�− ��y,z=L��, to the scatterers, �n’s. In this ISE, the
only unknowns are the diagonal components of �Gxx,z=0� and
�Gyy,z=0�, which are −�n

−1. It is of value to consider that the
ISE given in Eq. �9� is a system of nonlinear equations in
terms of �n

−1. The inverse of the middle matrix creates the
nonlinear effect. To solve this nonlinear matrix equation,
there are several nonlinear solver techniques to be used.24–26

Levenberg-Marquardt technique26 has been found to be more
appropriate for our study and will be applied here to success-
fully solve the nonlinear ISE given in Eq. �9�. A discussion
about this powerful approach for solving the nonlinear set of
equations is presented in the Appendix.

The final step, fourth step, is to design the geometry of
each concentric spherical particle which is finding the inner
and outer radii a and b of each plasmonic particle, satisfying
the obtained required polarizablities. As discussed earlier, by
full analytical Mie scattering analysis,27 the concentric core-
shell particle depicted in Fig. 1�b� can be modeled by an
induced electric dipole moment with the polarizability �.
The higher-order terms are ignored considering the subwave-
length sizes of the particles. As a result the polarizability
which is the dipolar coupling between the electric field and
the concentric core-shell particle is given as11

� =
− j6��0

k0
3

U

U − jV
, �10�

where ej�t time convention is assumed throughout this paper
and U is given by
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U = �
j1�k1a� j1�k2a� y1�k2a� 0

j̃1�k1a�/�1 j̃1�k2a�/�2 ỹ1�k2a�/�2 0

0 j1�k2b� y1�k2b� j1�k0b�

0 j̃1�k2b�/�2 ỹ1�k2b�/�2 j̃1�k0b�/�0

� .

�11�

j1�x� and y1�x� are spherical Bessel functions of the first and
second kind, respectively, and of the first order. Moreover
z̃�x�=d�xz�x�� /dx, where z can be any of j1 and y1. Also k1
and k2 are the wave numbers of dielectric core and plasmonic
shell, respectively. V is similar to U but in the fourth column
in the determinant, j̃1 and j1 should be replaced by ỹ1 and y1,
correspondingly.

As mentioned before, the core is considered to be a di-
electric material, and the shell a plasmonic material with
Drude dispersive model as below28

�2 = �0�1 −
�p

2

��� − j�D�
� , �12�

where �p and �D are the plasma and damping frequencies of
the plasmonic material. Noble materials such as silver in
optical regime can be used as the plasmonic shell for array
elements. The numerical values for �p and �D can be
achieved by fitting the experimental data of the noble metals’
permittivity to the Drude model.29 For example, at �
=620 nm, �=2� /k0, for �p=9.121�1015 and �D=3.378
�1013 the permittivity of the shell will be �2=�0�−8− j0.1�.

After obtaining the magnitude and phase of polarizability
���� and ��� from Eq. �9�, one can determine the inner and
outer radii of the plasmonic particles, or equivalently the
radii ratio a /b and normalized outer radius b /� �by plotting
��� and �� using Eq. �10� in a plane constructed by the two

independent variables a /b and b /� and finding the intersec-
tion of these two contours�. The above methodology offers a
successful design procedure to create the required
plasmonic-array nanoparticles for a desired near-field ma-
nipulation, as will be highlighted for a typical example in the
next section.

III. PLASMONIC-PARTICLES CONCENTRATORS

In this section, the design procedure for an array of plas-
monic particles engineering the near-field patterns in a speci-
fied focal plane is demonstrated. One needs to solve the non-
linear ISE equation given by Eq. �9� to achieve the required
parameters. In all the cases studied in this section, the unit-
cell size of d=0.1� is considered, and the focal length L
=0.15� is assumed. Also, the desired pattern at z=L is a
two-dimensional sinc function �see Fig. 5�a�� with the null-
to-null beamwidth of � /5 given as below

f�x,y� =
sin�qx�

qx

sin�qy�
qy

. �13�

Here q=5k0 is considered to obtain a � /5 beamwidth. The
resolution enhancement is defined as Re=q /k0 �=5�.7 The
goal is to match the required near-field profile with the nulls
of the sinc function and its peak value at the main beam. The
permittivity of the core and shell for the elements are �1
=�0�2.2− j0.001� and �2=�0�−8− j0.1� at the operational op-
tical wavelength �=620 nm �orange light in visible spec-
trum�, respectively.

For the sake of simplicity and to demonstrate the physical
meanings conveniently, we start with a 5�5 array of plas-
monic particles. The objective is to determine the induced
dipoles and the array elements configurations consequently.

TABLE I. Magnitude and phase of the induced dipoles along the
y for the array of 5�5 nanoparticles. �a� �py� �b� �py.

(a) (b)

TABLE II. Magnitude and phase of the induced dipoles along
the x for the array of 5�5 nanoparticles. �a� �px� �b� �px.

(a) (b)

TABLE III. Magnitude and phase of the polarizability of each of
the core-shell nanoparticles for the 5�5 array. �a� ��� /�0 �b� ��
�in deg.�.

(a) (b)

TABLE IV. Geometry of each nanoparticle for the 5�5 array
�a� b /� �b� a /b.

(a) (b)
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To achieve this, we should follow the equations derived in
Sec. II. Namely, for obtaining the desired pattern �Eq. �13��,
one must first obtain the required px, py, �, and then the
geometry configurations a and b for each element, as they
are summarized in Tables I–IV. As obtained from �a� part of
Tables I and II, the dominant polarization is py �since the
source is polarized along the y�. Another observation is the
phase alternation of py between around 0° and 180° control-
ling the weighting functions for the field profile of each plas-
monic particle, featuring the focusing phenomenon. To better
understand this feature, in Fig. 2�a� we plot the field pattern
for the y-polarized dipoles of the middle row in Table I when
they have the same electric dipole moment. In Fig. 2�b� the
performance of the dipoles with the proper weighting factors
associated with the middle row in Table I is illustrated. Com-
bination of these patterns will narrow the beam along the x
axis as is shown in Fig. 2�c�. In this figure we also show the
performance of a single dipole for the sake of comparison
and to highlight the success of our focusing approach.

The main challenge is next to create the dielectric-
plasmonic core-shell nanoparticles array realizing the re-
quired induced dipoles. The advantage of considering core
shells is the fact that one has more flexibility in the design
space. For instance, in Fig. 3, we demonstrate ��� and �� in
terms of b /� and a /b which will be the design rule for
achieving the required plasmonic particles. The magnitude of
the polarizability ��� is normalized by a normalization factor
�0=4��0 /k0

3 for simplicity. A typical contour plot is shown
in Fig. 4 that demonstrates how, for example, one can obtain
the required core and shell radii, �b /� ,a /b�= �0.043,0.63�,
to achieve the required polarizability, � /�0=0.05�−3°. The
obtained �’s ensure the required px and py manipulating the

near-field pattern in the focal plane. It must be mentioned
that not always one can achieve the exact required �. There-
fore, one has to make an approximation in obtaining the
required core-shell particle providing the best closest � in
our design space. In this case, the phase of polarizability can
be changed slightly to make the two contours have an inter-
section point in expense of suffering from some approxima-
tion. The accuracy of this procedure is highlighted well later
in this section through the demonstrated results. Note that,
the outer radius of each element should be less than the half
of unit-cell size, i.e., b�d /2. In our case d / �2��=0.050 and
in �a� part of Table IV, the constraint b /��0.050 is satisfied
for all the plasmonic particles.

Let us now investigate the results for the design of a 5
�5 plasmonic-particles array design. Figure 5�a� shows the
required sinc function pattern in the focal plane and obvi-
ously our goal is to ensure the plasmonic particles can ma-
nipulate the near field in the focal plane as close as possible
to the sinc function. The merit function is the nulls of the
sinc �two at each side� and its peak at the main beam �since
we have five spheres�. Using more number of points can
provide a better matching to the desired field profile �as will
be investigated next�. For the sake of comparison, the field
pattern of a single dipole in the focal plane is also calculated
in Fig. 5�b�. The field performances for the array of induced
dipoles and their approximated values �modeled by plas-
monic nanoparticles� are plotted in Figs. 5�c� and 5�d�, re-
spectively. The approximated result refers to the case in
which the phase of polarizability can be changed slightly to
make the two polarizability phase and magnitude contours
have an intersection point. As observed, our designed plas-
monic particles can successfully engineer the near field in the
required focal plane and enable the narrow-beam perfor-

(a) (b) (c)

FIG. 2. �Color online� Focusing phenomenon for the real part of Ey in the focal plane �z=0.15��. �a� Normalized shifted beams for the
identical y-polarized infinitesimal dipoles located at r−2=−0.2�x̂ �green with circle marker�, r−1=−0.1�x̂ �purple with diamond marker�,
r0=0 �black with solid line�, r+1=0.1�x̂ �blue with pentagram marker�, and r+2=0.2�x̂ �red with square marker�, �b� The shifted patterns
multiplied by their weighting factors, w	2=0.42�6°, w	1=1�179.7°, and w0=1�0°, and �c� subwavelength beam which is the superpo-
sition of the five-weighted dipoles patterns �blue with solid line� and the pattern of a single dipole �red with circle marker�.

(a) (b)

FIG. 3. �Color online� �a� Normalized amplitude of the polariz-
ability, ��� /�0 in terms of a /b and b /�. �b� The phase performance,
−��.

FIG. 4. �Color online� Design-rule curve for the geometry real-
ization of the core-shell plasmonic particles, using polarizability
magnitude and phase contours.
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mance. To demonstrate better the field performance of the
array, the two-dimensional plots along the x and y axes are
also demonstrated in Figs. 6�a� and 6�b�, respectively. As
observed from these figures, we are able to narrow the beam
in both x and y directions with the use of our designed core-
shell dielectric-plasmonic particles. The results derived for
the exact induced dipole array successfully follow the nulls
of the desired sinc function. The approximated core-shell
dielectric-plasmonic particles performance is slightly devi-
ated from the exact model result; however, still a narrow-
beam characteristic is successfully developed.

To validate the accuracy of the proposed theoretical
model, we apply a full-wave analysis based on CST commer-
cial software to characterize the performance of the array of
5�5 dielectric-plasmonic core shells. The results are shown
in Fig. 7 along the x and y directions. A good comparison is
illustrated. The slight difference is due to the fact that in our
modeling we approximate each nanoparticle with a dipole
located at its center while in CST the whole spherical particle
is modeled. Considering the near-field calculation, this slight
difference is very much reasonable. A relatively good com-
parison is achieved, realizing beam focusing in the focal
plane. Notice that in CST analysis the size of the dipole

excitation is considered around 0.05� �in the order of outer
radius of the nanoparticles�.

Increasing the number of array elements allows achieving
a better near-field performance in regard of narrowing the
beam. Figures 8�a� and 8�b� obtain the three-dimensional
plots for the exact and approximated 11�11 polarizabilities
designs, respectively. The successful beam narrowing is
demonstrated. The two-dimensional plots are shown in Fig.
9. It is obtained that the 11�11 array design has a better
characteristic than that of the 5�5 case �Fig. 6�. One can see
the null-to-null beamwidth for the 11�11 array along the x
direction is about 0.36� and along the y direction is about
0.2�. The desired null-to-null beamwidth for both the x and y
directions is 0.2�. We need to mention that from all the ob-
tained near fields in the focal plane, one can observe narrow-
ing the beam along the y axis is more successful than along
the x axis. This is because of having narrower beam for the
dipole excitation itself along the y direction. Thus, there is
more challenge to manipulate and focus the beam along the x
direction. One solution to this will be if one uses more num-
ber of dielectric-plasmonic elements along the x direction so
that the beam can be narrowed to our interest in this direc-
tion.

The concept and formulations developed in this paper al-
low successful optical near-field engineering with the use of
array of plasmonic particles that can be uniform or nonuni-
form depending on the application of interest. Although a
simple planar �rectangular� array is utilized here, where the
elements are placed along a rectangular grid,30 our formula-
tion can be applied to other general arrays configurations
enabling state-of-the-art optical applications. Other particles
configurations such as multishells of different materials �in-
creasing the design flexibility�, and arrangements in unique

(a) (b)

FIG. 6. �Color online� The magnitude of normalized Ey at the
focal plane z=0.15� for the 5�5 array obtained by using the exact
polarizabilities �blue with squarer marker�, by using approximated
polarizabilities �green with circle marker�, for a single dipole along
y at the origin �red with diamond marker�, and for a desired sinc
pattern �purple solid line�. �a� Along x axis. �b� Along y axis.

(a)

(d)(c)

(b)

FIG. 5. �Color online� The magnitude of normalized Ey at the
focal plane z=0.15� for �a� desired sinc function. �b� A single in-
finitesimal dipole. �c� Exact polarizabilities 5�5 array performance
found by Levenberg-Marquardt technique, and �d� the approxi-
mated polarizabilities 5�5 array model.

(a) (b)

FIG. 7. �Color online� The magnitude of normalized Ey at the
focal plane z=0.15� for the 5�5 array obtained based on our the-
oretical model �green with circle marker� and using full-wave CST

simulation �brown solid line�. �a� Along x axis. �b� Along y axis. A
relatively good comparison is illustrated.

(a) (b)

FIG. 8. �Color online� The magnitude of normalized Ey in the
focal plane z=0.15� for the 11�11 array of plasmonic core-shell
particles. �a� Exact polarizabilities array performance and �b� ap-
proximated polarizabilities model.

ARASH RASHIDI AND HOSSEIN MOSALLAEI PHYSICAL REVIEW B 82, 035117 �2010�

035117-6



patterns, can demonstrate desired physics. Further designs
considering the fabrication realization are in progress.

IV. CONCLUSIONS

Array of dielectric-plasmonic core-shell nanoparticles is
developed to engineer the near-field pattern and enable sub-
wavelength optical focusing. Dipolar mode equations along
with the dyadic Green’s function formulation for the interac-
tion between the elements are applied to summarize the re-
quired equations. Point-matching method is used and a non-
linear inverse scattering problem is determined to design the
geometry of each array nanoparticle and establish the desired
focusing pattern. Levenberg-Marquardt technique is success-
fully employed to solve the obtained set of nonlinear equa-
tions and find the polarizability of each element. The closed-
form formula for the polarizability of a concentric core-shell
nanoparticle is then employed to find the geometry configu-
ration �the core and shell radii� for each element �with the
use of magnitude and phase contours of the polarizability�.

Arrays of 5�5 and 11�11 nanoparticles are developed
to focus the optical beam in a specified focal plane, success-
fully. The physical meanings of the numerical results are
highlighted. The subwavelength focusing is achieved by
proper superposition of shifted beams in near field of each of
the nanoparticles. Our theoretical model is compared well
with a full-wave analysis based on the CST commercial soft-
ware. Any component of the electromagnetic fields can be
manipulated with the proper arrangements of the plasmonic
nanoparticles. The proposed technique in this paper enables a
capable approach for near-field engineering of the optical
patterns with the use of novel array of plasmonic nano-
particles.
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APPENDIX

Levenberg-Marquardt algorithm,26,31 LMA, is an elegant
and heuristic method for solving simultaneous nonlinear
equations. It is indeed a nonlinear least-squares algorithm.
Let us assume that there is a set of N nonlinear equations
with N unknowns which can be written as

F�x� = 0 , �A1�

where F= �F1 ,F2 ,F3 , . . . ,FN� and x= �x1 ,x2 ,x3 , . . . ,xN�. In-
stead of solving Eq. �A1� directly, the summation of the
squares, s�x�, defined as below, will be minimized

s�x� =
1

2�
n=1

N

Fn
2�x� . �A2�

Hence, the efforts should be focused on obtaining the mini-
mum of s�x� which satisfies equation

�s�x� = 0 . �A3�

There are two common iterative algorithms for minimizing
s�x�, gradient descent algorithm �GDA� and Gauss-Newton
algorithm �GNA�. As we illustrate in this appendix, LMA is
just a blend of these two algorithms.

In GDA, which is actually the most intuitive technique to
find the minima of a function, state update is performed by
adding the negative scaled gradient at each step

xi+1 = xi − 
i � s�xi� , �A4�

where 
i�0 is the step size. When the gradient is small we
would like to take large steps �large 
i�; conversely, small
steps should be taken when the slope is not gentle �large
gradient�. The search direction di=−
i�s�xi� causes a con-
vergent problem when the surface has a long and narrow
valley. In this case, GDA is just rattling out the minima as the
search direction is very small at the base of the valley and
very large along the valley walls. To provide a successful
LMA solver, the GDA’s bottleneck and its advantage must be
weighted properly �as will be seen later�.

In GNA, the gradient of the function is expanded around
the current state, xi, given by the Taylor series

�s�xi+1� = �s�xi� + �H�x�� . �xi+1 − xi� + higher-order terms,

�A5�

where �H�x�� is the Hessian matrix defined by

�H�x��m,n =
�2s

�xm � xn
. �A6�

As long as s�x� has a quadratic behavior around the minima,
higher-order terms of �xi+1−xi� can be neglected and the
state update is found for GNA as

xi+1 = xi − �H�xi��−1 � s�xi� . �A7�

A closed-form formula for Hessian can be obtained by taking
a double gradient of Eq. �A2� as follows:

�s�x� = �
n=1

N

Fn�x� � Fn�x� = �J�x��TF�x� , �A8�

(a) (b)

FIG. 9. �Color online� The magnitude of normalized Ey at the
focal plane z=0.15� for the 11�11 array obtained by using the
exact polarizabilities �blue with square marker�, by using approxi-
mated polarizabilities �green with circle marker�, for a single dipole
along y at the origin �red with diamond marker� and for a desired
sinc pattern �purple solid line� �a� along x axis and �b� along y axis.
The 11�11 array can narrow the beam more successfully than the
5�5 case �obtained in Fig. 6�.
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�H�x�� = ��s�x� = �J�x��T�J�x�� + �
n=1

N

Fn�x� � �Fn�x� ,

�A9�

where �J�x�� is the Jacobian defined as �J�x��m,n=�Fm /�xn.
According to Eq. �A1�, it is possible to assume each nonlin-
ear function, Fm�x�, small near the solution so that an ap-
proximation for Hessian can be determined as given below

�H�x�� = �J�x��T�J�x�� . �A10�

When around the minima s�x� has a quadratic behavior,
GNA converges rapidly. So GNA and GDA are complemen-
tary in the advantages they provide. Levenberg proposed an
algorithm whose update rule is a blend of GNA and GDA
which is given by

xi+1 = xi − ��H�xi�� + 
i�I��−1 � s�xi� , �A11�

where �I� is the identity matrix. Following an update, if the
error is reduced, it implies that the quadratic assumption on

s�x� is working and we reduce 
i �usually by a factor of 10�
to reduce the influence of GDA. On the other hand, if the
error is increased, GDA is more prior to be followed; and
hence 
i is increased by the same factor.

When the value of 
i is large, larger movement should be
taken along the directions where the curvature is low, this
crucial insight was provided by Marquardt. Since the diago-
nal terms of the Hessian are proportional to the curvature of
s�x�, Marquardt replaced the identity matrix in Eq. �A10�
with the diagonal terms of Hessian, resulting to the well-
known Levenberg-Marquardt update rule �after we replace
the gradient by Eq. �A8��.

xi+1 = xi − ��H�xi�� + 
i diag�H�xi���−1 . �J�x��TF�x� .

�A12�

LMA works extremely well in practice and has become the
standard of nonlinear least-squares solvers.
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